With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Malpighian tubule. Using assays and transgenic lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux., autophosphorylation of purified WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, WNK activity acutely increased. WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In kinase assays, Mo25 enhanced the activity of the WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type , with or without, did not affect transepithelial ion transport, overexpressed with chloride-insensitive increased ion flux. Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.