We provide a review of the latest research findings as well as the future potential of plasma-based etching technology for the fabrication of micro-optical components and systems. Reactive ion etching (RIE) in combination with lithographic patterning is a well-established technology in the field of micro-and nanofabrication. Nevertheless, practical implementation, especially for plasma-based patterning of complex optical materials such as alumino-silicate glasses or glass-ceramics, is still largely based on technological experience rather than established models. Such models require an in-depth understanding of the underlying chemical and physical processes within the plasma and at the glass-plasma/mask-plasma interfaces. We therefore present results that should pave the way for a better understanding of processes and thus for the extension of RIE processes toward innovative three-dimensional (3D) patterning as well as for the processing of chemically and structurally inhomogeneous silicate-based substrates. To this end, we present and discuss the results of a variety of microstructuring strategies for different application areas with a focus on micro-optics. We consider the requirements for refractive and diffractive micro-optical systems and highlight potentials for 3D dry chemical etching by selective tailoring of the material structure. The results thus provide first steps toward a knowledge-based approach to RIE processing of universal dielectric glass materials for optical microsystems, which also has a significant impact on other microscale applications. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.