In this study, we report the effect of Zr4+ doping on the optical energy gap and microwave dielectric properties of rutile TiO2. Rietveld analysis explicitly confirmed that Zr4+ occupies the octahedral site, forming a single-phase tetragonal structure below the solubility limit (x < 0.10). Notably, at x = 0.025, a significant enhancement in Q × fo was observed. This enhancement was attributed to the reduction in dielectric loss, associated with a decrease in oxygen vacancies and a lower concentration of Ti3+ paramagnetic centers. This conclusion was supported by Raman and electron paramagnetic resonance spectroscopy, respectively. The origin of high τf in rutile Ti1−xZrxO2 is explained on the basis of the octahedral distortion/tetragonality ratio, covalency, and bond strength.