Slowly digestible starch (SDS) has attracted increasing attention for its function of preventing metabolic diseases. Based on transglycosylation, starch branching enzymes (1,4-α-glucan branching enzymes, GBEs, EC 2.4.1.18) can be used to regulate the digestibility of starch. In this study, a GBE gene from Bacillus licheniformis (bl-GBE) was cloned, expressed, purified, and characterized. Sequence analysis and structural modeling showed that bl-GBE belong to the glycoside hydrolase 13 (GH13) family, with which its active site residues were conserved. The bl-GBE was highly active at 80 °C and a pH range of 7.5–9.0, and retained 90% of enzyme activity at 70 °C for 16 h. bl-GBE also showed high substrate specificity (80.88 U/mg) on potato starch. The stability and the changes of the secondary structure of bl-GBE at different temperature were determined by circular dichroism (CD) spectroscopy. The CD data showed a loss of 20% of the enzyme activity at high temperatures (80 °C), due to the decreased content of the α -helix in the secondary structure. Furthermore, potato starch treated with bl-GBE (300 U/g starch) showed remarkable increase in stability, solubility, and significant reduction viscosity. Meanwhile, the slowly digestible starch content of bl-GBE modified potato starch increased by 53.03% compared with native potato starch. Our results demonstrated the potential applications of thermophilic bl-GBE in food industries.