AgNi contact materials have received widespread attention with the acceleration of the process of replacing AgCdO contact materials. However, the practical applications of AgNi contact materials are limited due to its disadvantage of poor resistance to melting welding. Firstly, following the first principles of the density functional theory, we simulated and tested an interfacial model of AgNi doped with varying amounts of Nb. Next, we fabricated AgNi electrical contact materials. Subsequently, we conducted electrical contact tests. Finally, the impact of Nb doping on the arc erosion behavior of AgNi electrical contact materials was analyzed. The results indicate that, with an increase in Nb doping content, the electrical contact performance and the degree of arc erosion exhibit a trend of initially decreasing and then increasing, which aligns with the simulation results. The mean values of arc energy, arc duration, and welding force for the material doped with 4.55% Nb were 181.02 mJ, 9.43 mS, and 38.45 cN, respectively. Moreover, the anode is more responsive to changes in Nb content compared to the cathode. The introduction of Nb enhances the viscosity of the molten pool in the AgNi electrical contact. Furthermore, the mechanisms of grain boundary strengthening and solid solution strengthening by Nb improve the weld performance resistance of the contact.