In this paper, the heterogeneity of adsorption pores in middle and high rank coal samples were analyzed by using low temperature N 2 and CO 2 adsorption technology and fractal theory. The following results were achieved. 1) According to the results of volume and surface fractal dimension, meso-pores can be classified into Mep-1, Mep-2, and Mep-3, respectively. Micro-pore can be classified into Mip-1, Mip-2, and Mip-3, respectively. 2) Pore types play an important role in affecting the heterogeneity of meso-pores. The volume heterogeneity (VHY) of Mep-1 is simpler than that of Mep-2 and Mep-3 in type A samples. However, the VHY of Mep-1 becomes gradually larger than that of Mep-2 and Mep-3 from type A to type B and C. The VHY of open pore in the same diameter is higher than that of semi-open or closed pore. Meanwhile, the surface heterogeneity (SHY) of types A and B samples is significantly larger than that of type C, the SHY of semi-open or closed pores is more complicated than that of open pores. 3) Coal rank mainly affects the heterogeneity of micro-pores. The heterogeneity of type A is always smaller than that of type B and C. The VHY of Mip-1 is more complicated than that of Mip-2 and Mip-3 in the same samples, and the sensitivity of the VHY of Mip-1 and Mip-2 to the degree of coal rank is smaller than that of Mip-3. Meanwhile, the SHY of Mip-1 and Mip-2 is simpler than that of Mip-3 in the same sample, the SHY of micro-pores remains stable as the pore size decreases, and the affect of coalification level on SHY decreases with the decrease in pore diameter. Full-scale fractal characterization has enabled quantitative characterization of adsorption pore properties and provided useful information with regards to the similarity of pore features in different coal reservoirs.