Modularity is an aspect of a decomposable system with a coordinating authority that acts as a glue which holds the loosely held components. These multi-component entities ("modules") facilitate rewiring into different designs allowing for change. Such modular character is a fundamental property of many biological entities, especially the family of megasynthases such as polyketide synthases (PKSs). The ability of these PKSs to produce diverse product spectra is strongly coupled to their broad architectural modularity.Decoding the molecular basis of modularity, i.e. identifying the folds and domains that comprise the modules as well as understanding constrains of the assembly of modules, is of utmost importance for harnessing megasynthases for the synthesis of designer compounds. In this study, we exploit the close semblance between PKSs and animal FAS to re-engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by structural and sequence information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS-like modules as well as bimodular constructs. The novel engineered modules resemble all four common module types of PKSs and demonstrate that this approach can be a powerful tool to create higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS-based biosynthetic pathways for custom compound design. 3 Keywords Multidomain protein, modularity of megasynthases, polyketide synthase, protein engineering Abbreviations FAS, fatty acid synthase; PKS, polyketide synthases; CMN, Corynebacteria,