The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme's active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O(2) evolution activity and binds to MSP-free PS II preparations at wild-type levels. This mutant was further characterized by incubation at 90 degrees C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 degrees C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O(2) evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O(2) evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803.