Defensins are a class of ubiquitously expressed cationic antimicrobial peptides (CAPs) that play an important role in innate defense. Plant defensins are active against a broad range of microbial pathogens and act via multiple mechanisms, including cell membrane permeabilization. The cytolytic activity of defensins has been proposed to involve interaction with specific lipid components in the target cell wall or membrane and defensin oligomerization. Indeed, the defensin Nicotiana alata defensin 1 (NaD1) binds to a broad range of membrane phosphatidylinositol phosphates and forms an oligomeric complex with phosphatidylinositol (4,5)-bisphosphate (PIP2) that facilitates membrane lysis of both mammalian tumor and fungal cells. Here, we report that the tomato defensin TPP3 has a unique lipid binding profile that is specific for PIP2 with which it forms an oligomeric complex that is critical for cytolytic activity. Structural characterization of TPP3 by X-ray crystallography and site-directed mutagenesis demonstrated that it forms a dimer in a "cationic grip" conformation that specifically accommodates the head group of PIP2 to mediate cooperative higher-order oligomerization and subsequent membrane permeabilization. These findings suggest that certain plant defensins are innate immune receptors for phospholipids and adopt conserved dimeric configurations to mediate PIP2 binding and membrane permeabilization. This mechanism of innate defense may be conserved across defensins from different species. P lant defensins are small (ϳ5 kDa), cysteine-rich, cationic peptides that belong to the broad class of innate defense molecules known as cationic antimicrobial peptides (CAPs). Plant defensins play a major role in plant innate immunity and have been identified in all analyzed plant species to date, as either constitutively expressed or induced defense molecules that are produced in response to pathogenic attack or environmental stress (1). The tertiary structure of all plant defensins is highly conserved, comprising a triple-stranded antiparallel -sheet and a single ␣-helix stabilized by four disulfide bridges, known as the "cysteine-stabilized alpha-beta" or "CS␣" motif (2). Despite this conserved three-dimensional structure, there is a high degree of variation in the primary sequence of plant defensins, particularly at intervening loop regions, which are typically important for activity (3).Many plant defensins have antifungal activity, but other functions have been reported, including antibacterial activity, ion channel blocking, protein synthesis inhibition, and trypsin and ␣-amylase inhibition as well as roles in heavy metal tolerance, plant development, and pollen tube guidance (3-5). They can be divided into two classes based on whether or not a C-terminal propeptide (CTPP) (of ϳ33 amino acids) is present (2, 6). This domain is involved in vacuolar targeting and protects the plant cells from phytotoxicity during transit through the secretory pathway (7). Defensins expressed with the additional CTPP domain are kn...