We study IrCrMnZ (Z=Al, Ga, Si, Ge) systems using first-principles calculations from the perspective of their application as the electrode materials of MgO-based MTJs. These materials have highly spin-polarized conduction electrons with partially occupied Δ1 band, which is important for coherent tunneling in parallel magnetization configuration. The Curie temperatures of IrCrMnAl and IrCrMnGa are very high (above 1300 K) as predicted from mean-field-approximation. The stability of ordered phase against various antisite disorders has been investigated. We discuss here the effect of ``spin-orbit-coupling'' on the electronic structure around Fermi level. Further, we investigate the electronic structure of IrCrMnZ/MgO heterojunction along (001) direction. IrCrMnAl/MgO and IrCrMnGa/MgO maintain half-metallicity even at the MgO interface, with no interfacial states at/around Fermi level in the minority-spin channel. Large majority-spin conductance of IrCrMnAl/MgO/IrCrMnAl and IrCrMnGa/MgO/IrCrMnGa is reported from the calculation of ballistic spin-transport property for parallel magnetization configuration. We propose IrCrMnAl/MgO/IrCrMnAl and IrCrMnGa/MgO/IrCrMnGa as promising MTJs with a weaker temperature dependence of tunneling magnetoresistance ratio, owing to their very high Curie temperatures.