Theoretical investigations of three pharmaceutically active chromone derivatives, (E)-3-((2,3,5,6-tetrafluorophenyl)hydrazono)methyl)-4H-chromen-4-one (TPC), (E)-3-((2-(2,4,6-trifluorophenyl)hydrazono)methyl)-4H-chromen-4-one (FHM) and(E)-3-((2-(perfluorophenyl)hydrazono)methyl)-4H-chromen-4-one (PFH) are reported. Molecular geometries, vibrational spectra, electronic properties and molecular electrostatic potential were investigated using density functional theory. Quantum theory of atoms in molecules (QTAIM) study shows that the maximum of ellipticity parameters in the existing bonds in TPC, FHM and PFH, attributes to the bonds involving in aromatic region points toward the π-bond interactions in the molecules. Based on energy gap (1.870, 1.649 and 1.590 eV) and electrophilicity index (20.233, 22.581 and 23.203 eV) values of TPC, FHM and PFH, we can conclude that all molecules have more biological activity. The molecular electrostatic potential maps were calculated to provide information on the chemical reactivity of the molecule and also to describe the intermolecular interactions. All these studies including docking studies, help a lot in determining the biological activities of chromone derivatives. Activities of chromone derivatives are compared with 5-fluorouracil and azathioprine (antitumor, antiproliferative standards) and were found to be higher than reference ones.