Background and Objectives: Acrylic resins remain the materials of choice for removable prosthesis due to their indisputable qualities. The continuous evolution in the field of dental materials offers practitioners today a multitude of therapeutic options. With the development of digital technologies, including both subtractive and additive methods, workflow has been considerably reduced and the precision of prosthetic devices has increased. The superiority of prostheses made by digital methods compared to conventional prostheses is much debated in the literature. Our study’s objective was to compare the mechanical and surface properties of three types of resins used in conventional, subtractive, and additive technologies and to determine the optimal material and the most appropriate technology to obtain removable dentures with the highest mechanical longevity over time. Materials and Methods: For the mechanical tests, 90 samples were fabricated using the conventional method (heat curing), CAD/CAM milling, and 3D printing technology. The samples were analyzed for hardness, roughness, and tensile tests, and the data were statistically compared using Stata 16.1 software (StataCorp, College Station, TX, USA). A finite element method was used to show the behavior of the experimental samples in terms of the crack shape and its direction of propagation. For this assessment the materials had to be designed inside simulation software that has similar mechanical properties to those used for obtaining specimens for tensile tests. Results: The results of this study suggested that CAD/CAM milled samples showed superior surface characteristics and mechanical properties, comparable with conventional heat-cured resin samples. The propagation direction predicted by the finite element analysis (FEA) software was similar to that observed in a real-life specimen subjected to a tensile test. Conclusions: Removable dentures made from heat-cured resins remain a clinically acceptable option due to their surface quality, mechanical properties, and affordability. Three-dimensional printing technology can be successfully used as a provisional or emergency therapeutic solution. CAD/CAM milled resins exhibit the best mechanical properties with great surface finishes compared to the other two processing methods.