Citrus paradisi species belong to the Rutaceae family, and it is commonly known as grapefruit. Grapefruit consumption involves a large amount of waste that goes to landfills and produces significant pollution affecting the human health. To examine this phenomenon, we designed an efficient chemical method that recovers naringin-rich flavonoid extracts from the fresh waste of grapefruits, by using the solvent impregnation resin method (SIR) with XAD-4 amberlite and either methanol or water as elution systems. Additionally, we focused on evaluating these extracts’ anxiolytic- and antidepressant-like effects in behavioral predictive paradigms in mice. According to direct Principal Component Analysis (PCA) by NMR, and Direct Injection Electrospray Ionization-Mass Spectrometry (DIESI-MS), methanol extracts obtained after resin treatment were free of coumarin compounds and evinced had a high content of naringin. Poncirin, phenylalanine, chrysin 5,7-dimethyl ether, 5,7-dimethoxy-4′-hydroxyflavanone, 2,3-dihydro-2-(4-hydroxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one, tetrahydrocurcumin, corchoionoside C, 6′-coumaroyl-1′-O-[2-(3,4-dihydroxyphenyl) ethyl]-β-D-glucopyranoside were also detected. Naringin-rich methanol extract caused a clear anxiolytic-like effect in the Elevated Plus Maze (EPM) and the Hole-Board (HBT) Tests, increasing oral doses of this extract did not produce a sedative effect. A single oral dose caused an antidepressant-like effect in the Tail Suspension Test (TST), while repeated administrations of the methanol extract elicited a robust antidepressant effect in the Forced Swimming Test (FST) in mice. Our evidence highlights the importance of bioprospecting studies of organic waste with therapeutic potentials, such as anxiety and depression disorders.