We report the coexistence of ferromagnetic order and superconductivity in UCoGe at ambient pressure. Magnetization measurements show that UCoGe is a weak ferromagnet with a Curie temperature T C 3 K and a small ordered moment m 0 0:03 B . Superconductivity is observed with a resistive transition temperature T s 0:8 K for the best sample. Thermal-expansion and specific-heat measurements provide solid evidence for bulk magnetism and superconductivity. The proximity to a ferromagnetic instability, the defect sensitivity of T s , and the absence of Pauli limiting, suggest triplet superconductivity mediated by critical ferromagnetic fluctuations. DOI: 10.1103/PhysRevLett.99.067006 PACS numbers: 74.70.Tx, 74.20.Mn, 75.30.Kz In the standard theory for superconductivity (SC) due to Bardeen, Schrieffer, and Cooper ferromagnetic (FM) order impedes the pairing of electrons in singlet states [1]. It has been argued, however, that on the border line of ferromagnetism, critical magnetic fluctuations could mediate SC by pairing the electrons in triplet states [2]. The discovery several years ago of SC in the metallic ferromagnets UGe 2 (at high pressure) [3], URhGe [4], and possibly UIr (at high pressure) [5], has put this idea on firm footing. However, later work provided evidence for a more intricate scenario in which SC in UGe 2 and URhGe is driven by a magnetic transition between two polarized phases [6 -8] rather than by critical fluctuations associated with the zero temperature transition from a paramagnetic to a FM phase. Here we report a novel ambient-pressure FM superconductor UCoGe. Since SC occurs right on the border line of FM order, UCoGe may present the first example of SC stimulated by critical fluctuations associated with a FM quantum critical point (QCP).UCoGe belongs to the family of intermetallic UTX compounds, with T a transition metal and X is Si or Ge, that was first manufactured by Troć and Tran [9]. UCoGe crystallizes in the orthorhombic TiNiSi structure (space group P nma ) [10,11], just like URhGe. From magnetization, resistivity (T 4:2 K) [9,10] and specific-heat measurements (T 1:2 K) [12] it was concluded that UCoGe has a paramagnetic ground state. This provided the motivation to alloy URhGe (Curie temperature T C 9:5 K) with Co in a search for a FM QCP in the series URh 1ÿx Co x Ge (x 0:9) [13]. Magnetization data showed that T C upon doping first increases, has a broad maximum near x 0:6 (T max C 20 K) and then rapidly drops to 8 K for x 0:9 [13]. This hinted at a FM QCP for x & 1:0. In this Letter we show that the end (x 1:0) compound UCoGe is in fact a weak itinerant ferromagnet. Moreover, metallic ferromagnetism coexists with SC below 0.8 K at ambient pressure.Polycrystalline UCoGe samples were prepared with nominal compositions U 1:02 CoGe (sample 2) and U 1:02 Co 1:02 Ge (sample 3) by arc melting the constituents (natural U 99.9%, Co 99.9%, and Ge 99.999%) under a high-purity argon atmosphere in a water-cooled copper crucible. The as-cast samples were annealed for 10 days at 850 C. Sampl...