Abstract. Most of the upper crustal fluid flows are strongly influenced by the pre-existing fractures/foliations in the rocks under a certain state of tectonic stress and fluid pressure condition. In the present study, we analyze a wide range of crosscutting fractures that are filled with quartz veins of variable orientations and thicknesses, from the gold bearing massive metabasalts (supracrustal) of the Chitradurga Schist Belt adjacent to the Chitradurga Shear Zone (CSZ), western Dharwar craton, south India. The study involves the following steps: 1) analyzing the internal magnetic fabric using anisotropy of magnetic susceptibility (AMS) studies, and strength of the host metabasalts, 2) quantifying the fluid pressure condition through lower hemisphere equal area projection of pole to veins by determining the driving pressure ratio (R'), stress ratio (ϕ), and susceptibility to fracturing, and 3) deciphering the paleostress condition using fault slip analysis. We interpret that the NNW-SSE to NW-SE (mean 337°/69° NE) oriented magnetic fabric in the rocks of the region developed during regional D1/D2 deformation on account of NE-SW shortening. However, D3 deformation manifested by NW-SE to E-W shortening led to the sinistral movement along CSZ. As a consequence of this sinistral shearing, fractures with prominent orientations formed riedel shear components, with CSZ as the shear boundary. Subsequently, all the pre-existing fabrics along with the riedel shear components were reactivated and vein emplacement took place through episodic fluid pressure fluctuation from high to low Pf at shallow depth (~ 2.4 km). However, NNW-SSE orientations were susceptible for reactivation under both high and low Pf conditions leading to a much greater thickness along the same. The deduced paleostress from fault-slip analysis, along with the kinematics of the fractures and veins are in good agreement with the previously revealed regional tectonics. Thus, integrating multiple domains of studies, help in the logical interpretation of fluid flow condition and vein emplacement mechanism in the study area that has not been ventured before.