Ultra-high-performance concrete (UHPC) is considered to be a promising material for the strengthening of damaged reinforced concrete (RC) members due to its high mechanical strength and low permeability. However, its high material cost, limited code provisions, and scattered material properties limit its wide application. There is a great need to review existing articles and create a database to assist different technical committees for future code provisions on UHPC. This study presents a comprehensive overview focusing on the effect of the UHPC layer on the flexural and shear strengthening of RC beams. From this review, it was evident that (1) different retrofitting configurations have a remarkable effect on the cracking moment compared to the maximum moment in the case of flexural strengthening; (2) the ratios of the shear span and UHPC layer thickness have a notable effect on shear strengthening and the failure mode; and (3) different bonding techniques have insignificant effects on shear strengthening but a positive impact on flexural strengthening. Overall, it can be concluded that three-side strengthening has a higher increment range for flexural (maximum, 81%–120%; cracking, 300%–500%) and shear (maximum, 51%–80%; cracking, 121%–180%) strengthening. From this literature review, an experimental database was established, and different failure modes were identified. Finally, this research highlights current issues with UHPC and recommends some future works.