RNA-binding proteins (RBPs) act as a key factor in gene regulation by governing RNA metabolism. They contribute to the expression and functions of most RNAs by binding to them and forming complexes. RNA-binding motif protein 38 (RBM38), a member of the RBP family, alters the stability and translation of targeted mRNAs to affect various biological processes, such as cell proliferation, cell cycle arrest, and myogenic differentiation. RBM38 contains a highly conserved RNA recognition motif (RRM) consisting of two subunits, RNP1 and RNP2, which specifically bind to RNAs. Recent studies have revealed that RBM38 regulates the mRNA stability of several tumor-related genes, such as
p53
,
mdm2
,
p63
,
p73
,
p21
, and
c-Myc
, by binding to their 3′ untranslated regions (3′ UTRs); thus, RBM38 modulates targeted gene expression and affects the biological processes of tumors. In addition, abnormal RBM38 expression in some malignant tumors and its correlation with prognosis have been documented in many studies, indicating its value for potential clinical applications. In this review, we present an overview of RBM38, specifically highlighting its relationship with tumor manifestation and development. A brief overview of the potential use of RBM38 in cancer therapy is also included to provide ideas for further research on RBM38.