Ubiquitin (Ub) is an essential modifier conserved in all eukaryotes from yeast to human. Phospholipase A 2 -activating protein (PLAA), a mammalian homolog of yeast DOA1/UFD3, has been proposed to be able to bind with Ub, which plays important roles in endoplasmic reticulum-associated degradation, vesicle formation, and DNA damage response. We have identified a core domain from the PLAA family ubiquitin-binding region of human PLAA (residues 386 -465, namely PFUC) that can bind Ub and elucidated its solution structure and Ubbinding mode by NMR approaches. The PFUC domain possesses equal population of two conformers in solution by cis/ trans-isomerization, whereas the two isomers exhibit almost equivalent Ub binding abilities. This domain structure takes a novel fold consisting of four -strands and two ␣-helices, and the Ub-binding site on PFUC locates in the surface of ␣2-helix, which is to some extent analogous to those of UBA, CUE, and UIM domains. This study provides structural basis and biochemical information for Ub recognition of the novel PFU domain from a PLAA family protein that may connect ubiquitination and degradation in endoplasmic reticulum-associated degradation.The eukaryotic secreted proteins are translocated into the endoplasmic reticulum after synthesis in cytosol. Misfolded or abnormally assembled proteins should be targeted for degradation through the endoplasmic reticulum-associated degradation (ERAD) 3 pathway (1, 2). This pathway involves many molecular steps: unfolded protein response in the endoplasmic reticulum lumen, retrotranslocation back into the cytosol, ubiquitin (Ub) conjugation, delivery of ubiquitinated proteins to proteasome, and degradation of the substrates by proteases (3, 4).A yeast protein DOA1/UFD3 has been shown to bind to CDC48 by both indirect and direct ways (5-7), suggesting that DOA1 may be involved in ERAD. Evidence indicates that DOA1 directly competes with UFD2 at the same docking site on CDC48, which determines whether a substrate is multiubiquitinated and routed to the proteasome for degradation or deubiquitinated and released for other purposes (8). The direct interaction between DOA1 and Ub was suggested by recent studies (7, 9). Moreover, DOA1 also plays roles in the monoubiquitination of histone H2B and proliferating cell nuclear antigen (10) and in sorting ubiquitinated membrane proteins into multivesicular bodies (11).The mammalian homolog of DOA1 is called phospholipase A 2 -activating protein (PLAA), which can bind to P97/VCP (a CDC48 homolog) with its C-terminal domain PUL (7). Having high sequence similarity (31% identity) with DOA1, PLAA is proposed to possess similar function of DOA1. Like DOA1, PLAA has an N-terminal WD40 domain with yet unknown function. The central region of PLAA contains a putative PLAA family ubiquitin-binding (PFU) domain, which is supposed to bind with Ub as observed in yeast DOA1 (7). Although the mechanism underlying the function of PLAA remains unclear, Ub binding of PLAA might be the central role that connects ubiquitin...