GPCR kinase 2-interacting protein-1 (GIT1) is a scaffold protein that plays an important role in cell adaptation, proliferation, migration, and differentiation; however, the role of GIT1 in the regulation of neuronal death after spinal cord injury remains obscure. Here, we demonstrate that GIT1 deficiency remarkably increased neuronal apoptosis and enhanced JNK/p38 signaling, which resulted in stronger motor deficits by ischemia-reperfusion in vivo, consistent with the finding of oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro. After treatment with JNK and p38 inhibitors, abnormally necroptotic cell death caused by GIT1 knockdown could be partially rescued, with the recovery of neuronal viability, which was still poorer than that in control neurons. Meanwhile, overactivation of JNK/p38 after GIT1 depletion was concomitant with excessive activity of apoptosis signal-regulating kinase-1 (ASK1) that could be abolished by ASK1 silencing in HEK293T cells. Finally, GIT1 could disrupt the oligomerization of ASK1 via interaction between the synaptic localization domain that contains the coiled-coil (CC)-2 domain of GIT1 and the C-terminal CC domain of ASK1. It suppressed the autophosphorylation of ASK1 and led to decreasing activity of the ASK1/JNK/p38 pathway. These data reveal a protective role for GIT1 in neuronal damage by modulating ASK1/JNK/p38 signaling.-Chen, J., Wang, Q., Zhou, W., Zhou, Z., Tang, P.-Y., Xu, T., Liu, W., Li, L.-W., Cheng, L., Zhou, Z.-M., Fan, J., Yin, G.-Y. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling.