Study design
: Biomechanical study of a nucleus replacement
with a finite element model.
Objective
: To validate a
Bionate 80A ring-shaped nucleus replacement.
Methods
:
The ANSYS lumbar spine model made from lumbar spine X-rays and magnetic
resonance images obtained from cadaveric spine specimens were used.
All materials were assumed homogeneous, isotropic, and linearly elastic.
We studied three options: intact spine, nucleotomy, and nucleus implant.
Two loading conditions were evaluated at L
3
-L
4
, L
4
-L
5
, and L
5
-S
1
discs:
a 1000 N axial compression load and this load after the addition of
8 Nm flexion moment in the sagittal plane plus 8 Nm axial rotation
torque.
Results
: Maximum nucleus implant axial compression
stresses in the range of 16–34 MPa and tensile stress in the
range of 5–16 MPa, below Bionate 80A resistance were obtained.
Therefore, there is little risk of permanent implant deformation or
severe damage under normal loading conditions. Nucleotomy increased
segment mobility, zygapophyseal joint and end plate pressures, and
annulus stresses and strains. All these parameters were restored satisfactorily
by nucleus replacement but never reached the intact status. In addition,
annulus stresses and strains were lower with the nucleus implant than
in the intact spine under axial compression and higher under complex
loading conditions.
Conclusions
: Under normal loading
conditions, there is a negligible risk of nucleus replacement, permanent
deformation or severe damage. Nucleotomy increased segmental mobility,
zygapophyseal joint pressures, and annulus stresses and strains. Nucleus
replacement restored segmental mobility and zygapophyseal joint pressures
close to the intact spine. End plate pressures were similar for the
intact and nucleus implant conditions under both loading modes. Manufacturing
customized nucleus implants is considered feasible, as satisfactory
biomechanical performance is confirmed.