Children with congenital anomalies have poorer intellectual and cognitive development compared to their peers, but evidence for academic achievement using objective measures is lacking. We aimed to summarize and synthesize evidence on academic outcomes and special education needs (SEN) of school-aged children born with selected major structural congenital anomalies. Electronic databases (MEDLINE, EMBASE, Scopus, PsycINFO, CINAHL, ProQuest Natural Science and Education Collections), reference lists and citations for 1990-2020 were systematically searched. We included original-research articles on academic achievement in children with non-syndromic congenital anomalies that involved school test results, standardized tests and/or SEN data. Randomeffects meta-analyses were performed to estimate pooled mean test scores in mathematics and/or reading where possible and pooled odds ratios (ORs) for SEN in children with severe congenital heart defects (CHDs) and children with orofacial clefts (OFCs). Thirty-nine eligible studies (n = 21,066 children) were synthesized narratively. Sixteen studies were included in meta-analyses. Children with non-syndromic congenital anomalies were at a higher risk of academic underachievement than controls across school levels. Children with severe CHD (pooled OR = 2.32, 95% CI: 1.90, 2.82), and children with OFC (OR = 1.38 (95% CI: 1.20, 1.57), OR = 3.07 (95% CI: 2.65, 3.56), and OR = 3.96 (95% CI: 3.31, 4.72) for children with cleft lip, cleft palate and cleft lip/palate, respectively) had significantly higher ORs for SEN than controls. Children with non-syndromic congenital anomalies underperform academically and have higher SEN rates compared to their peers. Early monitoring and development of differential SEN are important to promote academic progress in these children.