IntroductionTissue factor (TF) is the cellular transmembrane receptor for factor VIIa (VIIa). Fibroblasts, pericytes, smooth muscle cells, and epithelial cells constitutively express TF, whereas cells in direct contact with the blood, such as endothelial cells and monocytes, express TF only when activated by specific pathophysiological stimuli. 1 Injury to the vessel wall or pertubation of endothelium or monocytes, which could occur in various diseased states, results in exposure of blood to TF, thereby leading to the formation of TF/VIIa complexes that trigger the coagulation cascade. 2 In addition to its established role as an initiator of the coagulation process, TF was recently shown to function as a mediator of intracellular activities either by interactions of the TF cytoplasmic domain with the cytoskeleton or by supporting the VIIa-proteasedependent signaling. 3,4 Such activities may be responsible, at least in part, for the implicated role of TF in tumor development, 5-7 metastasis, [8][9][10][11] and angiogenesis. [12][13][14] Cellular exposure of TF/VIIa activity is advantageous in a crisis of vascular damage, but it may be fatal when exposure is sustained as it is in various diseased states. Thus, regulation of TF/VIIa activity plays a key role in vascular health conditions. Tissue factor pathway inhibitor (TFPI) is pivotal in regulating TF/VIIa function by inhibiting its enzymatic activity. 15,16 TFPI was also shown to down-regulate TF/VIIa activity on monocytes 17 and fibroblasts 18 by a mechanism whereby it induces the internalization and degradation of the complex upon binding to TF/VIIa. Recent studies with fibroblasts 18 provide evidence for the existence of an additional, TFPI-independent internalization of TF/VIIa. At present, it is unknown whether TF cytoplasmic domain is required for TF-mediated VIIa endocytosis. Although none of the known sorting sequences for association to clathrin-coated vesicles 19 are present in the cytoplasmic tail of TF, however, it contains a cysteine (C)245 available for palmitoylation and 3 serine residues susceptible to phosphorylation. 1 Both of these posttranslational modifications of TF may result in an altered affinity for membranes and proteins and thereby affect its subcellular location and the endocytosis pattern.In the present investigation we examined the role of TF cytoplasmic domain and C245 in TF-mediated endocytosis of VIIa by using baby hamster kidney (BHK) cells transfected with wild-type TF and TF variants. We also evaluated whether the observed VIIa internalization results from normal membrane turnover or involves an active internalization process. Our results show that the TF-dependent internalization of VIIa is an active process that occurs through a clathrin-independent mechanism and does not require the cytoplasmic domain of TF. A substantial portion of the internalized VIIa returns to the cell surface, and this recycled VIIa is functionally fully active. The publication costs of this article were defrayed in part by page charge payment. Ther...