DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism's DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key "wedge residue" to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it.DNA repair | search mechanisms O xidative DNA damage is produced endogenously during normal cellular metabolism or exogenously by chemical agents and ionizing radiation (1, 2). Oxidatively induced DNA damage resulting from attack by reactive oxygen species accounts for approximately one-half of all DNA base damages (3). Some oxidative base damages, such as thymine glycol, are blocks to DNA polymerases and thus potentially lethal; however, the majority of oxidative base lesions mispair with noncognate bases and are potentially mutagenic (4). Therefore, damaged bases must be repaired to maintain the cell's genomic integrity. With substantial in vivo steady-state levels of oxidative damages, alkylation damages, and apurinic/apyrimidinic (AP) sites among the nearly six billion normal bases, how DNA repair enzymes locate these damages in the sea of undamaged bases has been the subject of much speculation.The DNA repair mechanism responsible for the removal of the majority of endogenous DNA damages is the base excision repair (BER) pathway (4-6). The critical first step in BER is carried out by a DNA glycosylase that, fueled only by thermal energy, locates a damaged base and cleaves the N-glycosyl bond, thus removing the base lesion from the sugar phosphate backbone. Glycosylases are small monomeric proteins that are found in all living organisms and can be separated into different families based on substrate specificity and structural motifs. In Escherichia coli, there are three glycosylases, Nth, Fpg, and Nei, that directly remove oxidized DNA bases, and all three have an associated lyase activity that cleaves the DNA backbone. These glycosylases are members of two structural families, the helixhairpin-helix (HhH) or Nth superfamily and the helix-two turnshelix (H2TH) or Fpg/Nei family (7-9) (Fig. 1A). Interestingly, the HhH superfamily member, endonuclease III (Nth), and Fpg/ Nei family member, endonuclease VIII (Nei), primarily catalyze the removal of oxidized pyrimidines, such as 5,6-dihydroxy-5, 6-dihydrothymine (Tg), whereas formamidopyrimidine DNA glycosylase (Fpg) primarily removes oxidized purines...