Magnetic recording media are composed of magnetic thin films consisting of magnetically isolated crystallites. For practical use of magnetic particles as recording media, it will be necessary to realize high coercivity by fabricating nanocrystalline grains and forming grain boundaries with the nonmagnetic phase. In this study, a high-coercivity FePt-Ag nanocomposite magnet was synthesized by means of block copolymer-templated self-assembly. Precursors of Fe, Pt, and Ag were introduced into a polymer block, and the resulting material was oxidized and then reduced to form a nanocomposite consisting of FePt nanoparticles surrounded by a matrix of Ag. X-ray diffraction analysis revealed that the introduction of Ag did not significantly affect the crystalline ordering of the FePt. The addition of Ag increased the coercivity by 53% (from 11.1 to 17.0 kOe). Our results suggest that the grain boundaries of the nonmagnetic Ag metal acted as pinning sites, disrupting magnetic coupling between individual FePt nanocrystallites and hindering domain wall motion at an external magnetic field.