2017
DOI: 10.3390/md15020048
|View full text |Cite
|
Sign up to set email alerts
|

Structural Determinant and Its Underlying Molecular Mechanism of STPC2 Related to Anti-Angiogenic Activity

Abstract: In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product were subjected to evaluate their anti-angiogenic effects. In the tube formation assay, STPC2 showed dose-dependent inhibition. In addition, STPC2 could distinctly inhibit the permeation of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 29 publications
0
8
0
Order By: Relevance
“…The fucose contents for SCO, SCA, SCOA, and SCH were 24.53% ± 1.89%, 31.64% ± 1.91%, 33.20% ± 0.54%, and 30.53% ± 1.89%, respectively, which were in general higher than that of SC (25.87% ± 1.09%), suggesting that the degradation reagents may increase the fucose content of LMW fucoidans ( Table 1 ). The sulfate content of fucoidan plays a critical role in the biological functions as previously noted by other investigators [ 25 , 26 ]. Therefore, we measured the sulfate contents for SCO, SCA, SCOA, and SCH and the percentages were 17.47% ± 1.35%, 22.37% ± 0.98%, 22.23% ± 1.09%, and 19.77% ± 1.01%, respectively, which were significantly higher than that of SC (15.12% ± 0.67%), suggesting that degradation reagents may also increase the sulfate content of fucoidan ( Table 1 ).…”
Section: Resultsmentioning
confidence: 53%
“…The fucose contents for SCO, SCA, SCOA, and SCH were 24.53% ± 1.89%, 31.64% ± 1.91%, 33.20% ± 0.54%, and 30.53% ± 1.89%, respectively, which were in general higher than that of SC (25.87% ± 1.09%), suggesting that the degradation reagents may increase the fucose content of LMW fucoidans ( Table 1 ). The sulfate content of fucoidan plays a critical role in the biological functions as previously noted by other investigators [ 25 , 26 ]. Therefore, we measured the sulfate contents for SCO, SCA, SCOA, and SCH and the percentages were 17.47% ± 1.35%, 22.37% ± 0.98%, 22.23% ± 1.09%, and 19.77% ± 1.01%, respectively, which were significantly higher than that of SC (15.12% ± 0.67%), suggesting that degradation reagents may also increase the sulfate content of fucoidan ( Table 1 ).…”
Section: Resultsmentioning
confidence: 53%
“…VEGF antibody-derived compounds bevacizumab and ranibizumab, as well as the fusion protein aflibecept, interact with specific amino acids in the receptor-binding domain of VEGF, causing a steric inhibition of the binding of VEGF to its receptor [36], with differences in affinities between the compounds [37]. The interaction of fucoidan and other heparin-related compounds is complex, however, depending on features such as sulfation and molecular weight [38,39]. Furthermore, fucoidan has been shown to also have a binding affinity to VEGF receptors and to facilitate the internalization of VEGF receptors, blocking the binding and in-vitro functions of VEGF [38,40,41].…”
Section: Discussionmentioning
confidence: 99%
“…Vascular endothelial growth factors (VEGF) have been considered as the targets to inhibit deregulated blood vessel formation, which influences endothelial cell proliferation, migration, invasion and vascularization [ 51 , 52 ]. Interaction between VEGF receptor 2 (VEGFR2) and VEGF can be disrupted by fucoidan through binding to both VEGF and VEGFR2, inactivating VEGFR2/Erk/VEGF-signaling pathway in HMEC-1 cells [ 51 ].…”
Section: Molecular Targets Of Fucoidanmentioning
confidence: 99%
“…Interaction between VEGF receptor 2 (VEGFR2) and VEGF can be disrupted by fucoidan through binding to both VEGF and VEGFR2, inactivating VEGFR2/Erk/VEGF-signaling pathway in HMEC-1 cells [ 51 ]. VEGF recognizes sulfated groups of fucoidan to impede VEGF/VEGFR2 interaction, thus affecting the downstream signaling molecules including Src family kinase, focal adhesion kinase and AKT kinase ( Table 1 ) [ 52 ].…”
Section: Molecular Targets Of Fucoidanmentioning
confidence: 99%