Abstract:Human hookworm Necator Americanus (NA) causes iron deficiency anemia, as the parasite ingests blood from the gastrointestinal tract of its human host. This bioinformatics-based study focuses on eight of the cathepsin B-like cysteine proteases (CPs) of the worm to explore their pathogenic potential. CP1 -CP6, which harbored the active site cysteine residue for enzymatic activity, were relevantly observed to have Nterminal signal peptide for extracellular localization. The secretory CPs could be releasing indigenous worm heparin at the host-pathogen interface for anticoagulation purposes. CP2 and CP3 showed a novel hemoglobinase motif that could be a prerequisite for hemoglobin degradation. CP1 and CP6 shared similar enzymatic-pocket features with cathepsin B and cruzain that cleave high molecular weight kininogen for blood-thinning activity. CP1, CP2, CP3, CP5 and CP6 were predicted to bind heparin, at their C terminal domain, like human cathepsin B and cruzain non-covalently bind heparin to enhance their activity. NA CPs' action in concert with heparin, have implications for anti-heparin and heparin analog design against hookworm infection.