In open environment applications, fibers are increasingly being used that are expected to biodegrade in the soil after their desired service life. Biodegradable polymer fibers are a versatile alternative to natural fibers. In this study, the degradation behavior of fibers made from polylactic acid (PLA) and a polyhydroxy alkanoate (PHA) blend with PLA, as well as a bicomponent fiber (BICO) made from polybutylene succinate (PBS) and PLA, was investigated. The fibers were stored in topsoil at 23 °C for 12 weeks. In addition, fibers were stored in compost at 58 °C for 4 weeks to investigate the degradation behavior in an industrial composting plant. Reference materials were also stored without substrate under the same temperatures and humidity conditions. Samples were taken regularly, and mechanical testing, scanning electron microscopy (SEM), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and infrared spectroscopy (IR) were used to study the degradation of the fibers. After 12 weeks in soil at ambient temperatures, the PLA and BICO fibers showed no degradation. The PHA fibers showed cracks in SEM, a decrease in molecular weight, and changes in the IR spectrum. No evidence of biological influence (bacteria or fungi) was found. Under industrial composting conditions, all fibers showed a decrease in strength and molecular weight. For the BICO and the PHA fibers, the SEM images show significant changes. Especially in the PHA fibers, fungal mycelia can be seen. The studies provide a better insight into the processes involved in the degradation behavior under different environmental conditions.