Engineered nanomaterials with tailored properties are highly required in a wide range of industrial fields. Consequently, the researches dedicated to the identification of new applications for existing materials and to the development of novel promising materials and cost effective, eco-friendly synthesis methods gained considerable attention in the last years. Cobalt ferrite is one of the nanomaterials with a wide application range due to its unique properties such as high electrical resistivity, negligible eddy current loss, moderate saturation magnetization, chemical and thermal stability, high Curie temperature and high mechanical hardness. Moreover, its structural, magnetic and electrical properties can be tailored by the selection of preparation route, chemical composition, dopant ions and thermal treatment. This chapter presents the recent applications of nanosized cobalt ferrites doped or co-doped with divalent transition ions such as Zn 2+ , Cu 2+ , Mn 2+ , Ni 2+ , Cd 2+ obtained by various synthesis methods in ceramics, medicine, catalysis, electronics and communications.