Normal aging is accompanied by changes in hypothalamic functions including autonomic and endocrine functions and circadian rhythms. The rhesus monkey provides an excellent model of normal aging without the potential confounds of incipient Alzheimer's disease inherent in human populations. This study examined the hypothalamus of 51 rhesus monkeys (23 male, 18 female, 6.5–31 years old) using design-based stereology to obtain unbiased estimates of neuron and glia numbers and the Cavalieri method to estimate volumes for eight reference spaces: total unilateral hypothalamus, suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular nucleus (PVN), dorsomedial nucleus (DM), ventromedial nucleus (VM), medial mammillary nucleus (MMN), and lateral hypothalamic area (LHA). The results demonstrated no age-related difference in neuron number, glia number, or volume in any area in either sex except the PVN of male monkeys, which showed a significant increase in both neuron and glia numbers with age. Comparison of males and females for sexual dimorphisms revealed no significant differences in neuron number. However, males had more glia overall as well as in the SCN, DM, and LHA and had a larger hypothalamic volume overall and in the SCN, SON, VM, DM, and MMN. These results demonstrate that hypothalamic neuron loss cannot account for age-related deficits in hypothalamic function and provides further evidence of the absence of neurode-generation and cell death in the normal aging rhesus monkey.