Understanding the growth efficiency of individual trees, or growth per unit of resource utilization, can inform silvicultural management strategies to maximize tree and stand growth. Stand structure—the size and spatial distributions of trees within the stand—strongly influences water, light, and nutrient availability, as well as the resource-use efficiency of each tree. Key silvicultural tools for stand management include manipulating tree density, size distribution, and arrangement by controlling natural regeneration, artificial seeding, planting seedlings, and/or subsequent thinning of established trees. We analyzed two sets of plots from even-aged stands of common coniferous species in central Spain, 106 pure Scots pine (Pinus sylvestris) and 92 pure Mediterranean pine (Pinus pinaster), to examine the dynamics of the dominance hypothesis, the relationship between stand structure and growth, and the relationship between structure and growth efficiency. Our main findings revealed a negative impact of size-class uniformity on stand growth in both Scots pine and Mediterranean pine, while the positive effect of tree size on growth efficiency was supported for Mediterranean pine stands but uncertain for Scots pine. At the operational level, our results highlight how thinning intensity is more important than the thinning method in Mediterranean pinewoods and how thinning can benefit the provision of multiple ecosystem services. We also recommend integrating dominance effects on growth into individual tree modelling.