Purpose
This study aims to explore the factors influencing the evolution of emerging technology innovation network (ETIN) in combination with the key attributes and life cycle of emerging technologies, particularly the impact of multiple knowledge attributes and technology life cycle on the ETIN evolution.
Design/methodology/approach
This study collects 5G patent data and their citation information from the Derwent Innovations Index to construct a 5G technology innovation network (5GIN) as a sample network and conducts an empirical analysis of the 5GIN using the temporal exponential random graph model (TERGM).
Findings
The results indicate that during the 5GIN evolution, the network scale continues to expand and exhibits increasingly significant core-periphery structure, scale-free characteristic, small-world characteristic and community structure. Furthermore, the findings suggest that the multiple knowledge attributes based on the key attributes of emerging technologies, including knowledge novelty, coherence, growth and impact, have a significant positive influence on the ETIN evolution. Meanwhile, the temporal evolution of ETIN is also found to be correlated with the life cycle of emerging technologies.
Originality/value
This study extends the exploration of emerging technology research from a complex network perspective, providing a more realistic explanatory framework for the factors influencing ETIN evolution. It further highlights the important role that multiple knowledge attributes and the technology life cycle play within this framework.