Unpaired regions in RNA molecules - loops - are centrally involved in defining the characteristic three-dimensional (3D) architecture of RNAs and are of high interest in RNA engineering and design. Loops adopt diverse, but specific conformations stabilised by complex tertiary structural interactions that provide structural flexibility to RNA structures that would otherwise not be possible if they only consisted of the rigid A-helical shapes usually formed by canonical base pairing. By participating in sequence-non-local contacts, they furthermore contribute to stabilising the overall fold of RNA molecules. Interactions between RNAs and other nucleic acids, proteins, or small molecules are also generally mediated by RNA loop structures. Therefore, the function of an RNA molecule is generally dependent on its loops. Examples include intermolecular interactions between RNAs as part of the microRNA processing pathways, ribozymatic activity, or riboswitch-ligand interactions. Bioinformatics approaches have been successfully applied to the identification of novel RNA structural motifs including loops, local and global RNA 3D structure prediction, and structural and conformational analysis of RNAs and have contributed to a better understanding of the sequence-structure-function relationships in RNA loops.