The short-chain forming process using rotary swaging (RS) is an important method of achieving the manufacturing of lightweight axles. Axle steel, like 42CrMo, is widely used in many types of axles and shafts; however, there is no existing research on rotary-swaged axle steel’s mechanical properties. It makes sense to carry out a comprehensive study on the effect of RS on the mechanical behaviors of axle steel rods. In this study, a 42CrMo steel rod was processed by RS through ten passes. The tensile properties, torsion properties, compression properties, and fatigue properties were tested. There was an overall improvement in the torsional and fatigue performance after RS. Combined with a finite element analysis (FEM), the uneven distribution of the dislocations and existence of the elongation material were inferred to have caused the different modes of the mechanical behaviors. Fracture surfaces were analyzed and the results showed that the fracture pattern had changed. There existed a competitive relation between the internal fatigue cracks and external cracks, which could be attributed to uneven strain hardening. This research proved the advantages of RS in the processing of axle parts, which mainly benefitted the torsional working conditions, and provided evidence for a new processing route for lightweight axles with RS.