Inhibitors of dopamine b-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic cells, have shown promise for the treatment of cocaine abuse disorders. However, the mechanisms underlying the beneficial effects of these compounds have not been fully elucidated. We used the drug discrimination paradigm to determine the impact of DBH inhibitors on the interoceptive stimulus properties of cocaine. Sprague-Dawley rats were trained to discriminate cocaine (5.6 mg/kg) from saline using a multicomponent, food-reinforced discrimination procedure. On test days, subjects were pretreated with the nonselective DBH inhibitor disulfiram (0-100.0 mg/kg i.p.) or the selective DBH inhibitor nepicastat (0-56.0 mg/kg i.p.) 2 hours prior to a test session either alone or in combination with cumulatively administered cocaine (0-5.6 mg/kg i.p.). Neither disulfiram nor nepicastat substituted for the cocaine stimulus when tested up to doses that nonspecifically reduced responding. However, in combination studies, pretreatment with either disulfiram or nepicastat produced leftward shifts in the cocaine dose-response function and also conferred cocaine-like stimulus effects to the selective NE transporter inhibitor, reboxetine (0.3-5.6 mg/kg i.p.). These results indicate that pharmacological inhibition of DBH does not produce cocaine-like interoceptive stimulus effects alone, but functionally enhances the interoceptive stimulus effects of cocaine, possibly due to facilitated increases in DA released from noradrenergic terminals. These findings suggest that DBH inhibitors have low abuse liability and provide support to clinical reports that some subjective effects produced by cocaine, particularly aversive effects, are enhanced after DBH inhibition.