Ti 2 AlNb-based alloys have received considerable attention as potential materials to replace the nickel alloy at 600-750 °C, depending on their advantages of high specific strength, good corrosion and oxidation resistance. To realize the precision and performance control for Ti 2 AlNb-based alloy thin-walled components, the microstructure evolution was analyzed for setting up the unified viscoplastic constitutive equations based on the physical variables and simulating the forming process coupled between the deformation and the microstructure evolution. Through the finite element model with coupling of microstructure and mechanical parameters, the microstructure evolution and shape fabricating can be predicted at the same time, to provide the basis for the process parameters optimization and performance control. With the reasonable process parameters for hot gas forming of Ti 2 AlNb thin-walled components, the forming precision and performance can be controlled effectively.