Hydrophilic polymers are the center of research emphasis in nanotechnology because of their perceived “intelligence”. They can be used as thin films, scaffolds, or nanoparticles in a wide range of biomedical and biological applications. Here we highlight recent developments in engineering uncrosslinked and crosslinked hydrophilic polymers for these applications. Natural, biohybrid, and synthetic hydrophilic polymers and hydrogels are analyzed and their thermodynamic responses are discussed. In addition, examples of the use of hydrogels for various therapeutic applications are given. We show how such systems' intelligent behavior can be used in sensors, microarrays, and imaging. Finally, we outline challenges for the future in integrating hydrogels into biomedical applications.