2022
DOI: 10.46300/9106.2022.16.87
|View full text |Cite
|
Sign up to set email alerts
|

Structural Knowledge-Guided Feature Inference Network for Image Inpainting

Abstract: Image inpainting is an essential task in image restoration field. Currently, most meth- ods for image inpainting employ the encoder- decoder framework to restore degraded areas, and this often results in synthesizing wrong se- mantic structure due to the lack of guiding from effective prior information. In this paper, we pro- pose a structural knowledge-guided framework for image inpainting, which predicts both the edge map and corrupted content at the same time. Our model captures structural knowledge in the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?