2021
DOI: 10.1007/s10260-021-00579-1
|View full text |Cite
|
Sign up to set email alerts
|

Structural learning and estimation of joint causal effects among network-dependent variables

Abstract: Bayesian networks in the form of Directed Acyclic Graphs (DAGs) represent an effective tool for modeling and inferring dependence relations among variables, a process known as structural learning. In addition, when equipped with the notion of intervention, a causal DAG model can be adopted to quantify the causal effect on a response due to a hypothetical intervention on some variable. Observational data cannot distinguish between DAGs encoding the same set of conditional independencies (Markov equivalent DAGs)… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 24 publications
0
1
0
Order By: Relevance
“…The DAG was shown with the key variables as the nodes, associations between the variables as the edges and the causal dependences as arrows. In the process of causal structural learning, the graph edges and orientations of arrows were considered as random variables with statistical properties estimated by Monte Carlo Markov Chain (MCMC) sampling from Bayesian posterior distribution, provided as BNDAG software support ( 31 , 32 ). The result was structural causal model (SCM) shown as a graph in Fig.…”
Section: Resultsmentioning
confidence: 99%
“…The DAG was shown with the key variables as the nodes, associations between the variables as the edges and the causal dependences as arrows. In the process of causal structural learning, the graph edges and orientations of arrows were considered as random variables with statistical properties estimated by Monte Carlo Markov Chain (MCMC) sampling from Bayesian posterior distribution, provided as BNDAG software support ( 31 , 32 ). The result was structural causal model (SCM) shown as a graph in Fig.…”
Section: Resultsmentioning
confidence: 99%