The medium to long term behavior of a prototype magnetorheological (MR) damper for structural control of earthquake induced vibrations is investigated herein. Unlike some applications for which MR devices experience frequent dynamic loads, seismic dampers might not be used for most of their life, staying dormant for a long period until an earthquake hits the hosting structure. This work aims to evaluate the effectiveness of a MR damper after years of inactivity. A MR device has been tested twice, first in 2008 and then in 2013, after five years of absolute inactivity. The comparison between the results of the two tests is made in terms of force-displacement loops. It is shown that, after a 5-year rest, only part of the first stroke of the damper is characterized by an unexpected response of the damper. After half a stroke, the damper quickly returned to behave like in 2008, even if a slight non-reversible decrease of the reacting force has been recorded. The latter is found to be more evident (5–7%) for larger currents, less visible in the case of zero magnetic field. From the point of view of civil engineering, this decay of performance is definitely acceptable, being largely bounded within the limits of the uncertainties typically involved and taken into account in the structural design. Finally, starting from a literature review, the paper discusses the possible causes of the observed changes in the mechanical response of the damper over time.