Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
X-ray absorption spectroscopy is applied to investigate relationships between hierarchical organization of the skeleton and nanostructure of femoral bone in knee compartments and to understand the osteoarthritis (OA) related changes at the subcellular level. Our focus is on local electronic and atomic and molecular architectonics of the medial and lateral condyles of the femur resected during total knee arthroplasty in patients with medial compartmental knee OA. The element-specific and site-dependent peculiarities in spectral distributions of oscillator strength for core-to-valence transitions are revealed. The near Ca 2p and O 1s edges x-ray absorption fine structure (Ca 2p and O 1s NEXAFS) spectra of the saw cuts demonstrate substantial redistributions in intact and OA damaged areas on the proximal side, and on the proximal and distal sides of the samples. Examining the O 1s NEXAFS spectra new chemical bonds are revealed on the proximal surface in the OA areas. Strong intra-atomic intershell Ca2+ 2 p 3 / 2 , 1 / 2 5 3 d 1 interaction specifies the great similarity of the Ca 2p NEXAFS spectra. Their analysis performed in combination with the x-ray photoelectron data has demonstrated the formation of non-apatite calcium in the OA areas of the samples. It is shown that NEXAFS spectroscopy is a powerful tool for deeper understanding relationship between hierarchical skeletal organization and nanostructure of native bone. Perspectives for development of novel methods for medical imaging and diagnosis of subchondral bone at the nanolevel are discussed.
X-ray absorption spectroscopy is applied to investigate relationships between hierarchical organization of the skeleton and nanostructure of femoral bone in knee compartments and to understand the osteoarthritis (OA) related changes at the subcellular level. Our focus is on local electronic and atomic and molecular architectonics of the medial and lateral condyles of the femur resected during total knee arthroplasty in patients with medial compartmental knee OA. The element-specific and site-dependent peculiarities in spectral distributions of oscillator strength for core-to-valence transitions are revealed. The near Ca 2p and O 1s edges x-ray absorption fine structure (Ca 2p and O 1s NEXAFS) spectra of the saw cuts demonstrate substantial redistributions in intact and OA damaged areas on the proximal side, and on the proximal and distal sides of the samples. Examining the O 1s NEXAFS spectra new chemical bonds are revealed on the proximal surface in the OA areas. Strong intra-atomic intershell Ca2+ 2 p 3 / 2 , 1 / 2 5 3 d 1 interaction specifies the great similarity of the Ca 2p NEXAFS spectra. Their analysis performed in combination with the x-ray photoelectron data has demonstrated the formation of non-apatite calcium in the OA areas of the samples. It is shown that NEXAFS spectroscopy is a powerful tool for deeper understanding relationship between hierarchical skeletal organization and nanostructure of native bone. Perspectives for development of novel methods for medical imaging and diagnosis of subchondral bone at the nanolevel are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.