The influence of composition of liquid phase on composition of poly(propylene ether carbonates) in the copolymerization of CO2 with propylene oxide (PO), mediated by a zinc chloride cobalt double metal cyanide, was monitored by FT-IR/CO2 uptake/size exclusion chromatography in batch and semi-batch mode. The ratio of mol fractions of carbonate to ether linkages F (~0.15) was found virtually independent on the feed between 60 and 120 °C. The presence of CO2 lowers the catalytic activity but yields more narrowly distributed poly(propylene ether carbonates). Hints on diffusion and chemistry-related restrictions were found underlying, broadening the distribution. The incorporation of CO2 seems to proceed in a metal-based insertion chain process, ether linkages are generated stepwise after external nucleophilic attack. The presence of amines resulted in lower activities and no change in F. An exchange of chloride for nitrate in the catalyst led to a higher F of max. 0.45. The observations are interpreted in a mechanistic scheme, comprising surface-base-assisted nucleophilic attack of external weak nucleophiles and of mobile surface-bound carboxylato entities on activated PO in competition to protonation of surface-bound alkoxide intermediates by poly(propylene ether carbonate) glycols or by surface-bound protons. Basic entities on the catalyst may promote CO2 incorporation.