2022
DOI: 10.48550/arxiv.2201.08755
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Structural properties and classification of variable stars: A study through unsupervised machine learning techniques

Abstract: The advancement in the field of data science especially in machine learning along with vast databases of variable star projects like the Optical Gravitational Lensing Experiment (OGLE) encourages researchers to analyse as well as classify light curves of different variable stars automatically with efficiency. In the present work, we have demonstrated the relative performances of principal component analysis (PCA) and independent component analysis (ICA) applying to huge databases of OGLE variable star light cu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 52 publications
0
1
0
Order By: Relevance
“…Considerable efforts have gone into using machine learning to classify light curves from large ground-based surveys (e.g., Carrasco-Davis et al 2019;Tsang & Schultz 2019;Johnston et al 2019a;Cabral et al 2020;Hosenie et al 2020;Jamal & Bloom 2020;Szklenár et al 2020;Bassi et al 2021;Zhang & Bloom 2021). Such techniques have also been applied to light curves from NASA's Kepler and K2 missions (e.g., Blomme et al 2010Blomme et al , 2011Debosscher et al 2011;Bass & Borne 2016;Armstrong et al 2016;Hon et al 2017Hon et al , 2018bJohnston et al 2019b;Kgoadi et al 2019;Le Saux et al 2019;Giles & Walkowicz 2020;Kuszlewicz et al 2020;Audenaert et al 2021;Paul & Chattopadhyay 2022).…”
Section: Introductionmentioning
confidence: 99%
“…Considerable efforts have gone into using machine learning to classify light curves from large ground-based surveys (e.g., Carrasco-Davis et al 2019;Tsang & Schultz 2019;Johnston et al 2019a;Cabral et al 2020;Hosenie et al 2020;Jamal & Bloom 2020;Szklenár et al 2020;Bassi et al 2021;Zhang & Bloom 2021). Such techniques have also been applied to light curves from NASA's Kepler and K2 missions (e.g., Blomme et al 2010Blomme et al , 2011Debosscher et al 2011;Bass & Borne 2016;Armstrong et al 2016;Hon et al 2017Hon et al , 2018bJohnston et al 2019b;Kgoadi et al 2019;Le Saux et al 2019;Giles & Walkowicz 2020;Kuszlewicz et al 2020;Audenaert et al 2021;Paul & Chattopadhyay 2022).…”
Section: Introductionmentioning
confidence: 99%