The scope of this licentiate thesis is the investigation of carbon based thin films suitable for rolling components, especially roller bearings. Carbon and carbon nitride are materials with advantageous tribological properties and high resiliency.Such materials are required in order to withstand the demanding conditions of bearing operation, such as high loads and corrosive environments. A fundamental condition for coated bearings is that the deposition temperature must be striktly limited. Thus, carbon nitride (CN x ) thin films were synthesized here at low temperature of 150 o C by different reactive magnetron sputtering techniques, which are mid-frequency magnetron sputtering (MFMS), direct current magnetron sputtering (DCMS), and high power impulse magnetron sputtering (HiPIMS). While DCMS is a very well studied technique for carbon based films, MFMS and HiPIMS are relatively new sputtering techniques for carbon, and especially CN x depositions. Using different magnetron sputtering techniques, different ionization conditions prevail in the chamber during each process and influence the obtained film properties at a great extent. It was found that bias duty cycles and the amount of working gas ions are key parameters and affect the morphology and microstructure as well as the mechanical response of the films. Moreover, different bias voltages, from 20 V up to 120 V were applied during the processes in order to investigate the changes that the different ion energies induce in the film structure.The structural, mechanical and tribological properties of CN x films are also presented in this licentiate thesis. The morphology of CN x films strongly depends on both the deposition technique and ion energy. The special configuration of MFMS mode produces highly homogeneous and dense films even from low applied bias voltages, while in HiPIMS mode high bias voltages above 100 V must be applied in order to produce films with similar structural characteristics. DCMS is also proven as a good technique for homogeneous and dense films. Low bias voltages do not favor The tribological characteristics of the surface of the films were also investigated at nanoscale by a new reciprocal wear test. In this wear test, the recording of the track profile is performed in between consecutive test cycles, eliminating also thermal drift.The very low wear of the films deposited by MFMS at 100 V and 120 V revealed that during the wear test a phase transformation on the surface may take place, possibly graphitization. It is also demonstrated the way that the surface characteristics, such as asperities and roughness affects the tribological measurements. Attention is also turned to the presence of large asperities on the film surface and the way they affect the obtained average friction coefficient and tribological measured data.