Metamodel-based seismic fragility analysis methods can overcome the challenge of high computational costs of problems considering the uncertainties of earthquakes and structural parameters; however, the accuracy of metamodels is difficult to control. To enhance the efficiency of analyses without compromising accuracy, a metamodeling method using Gaussian process regression (GPR) and active learning (AL) for seismic fragility analysis is proposed. In this method, a GPR metamodel is built to estimate the stochastic seismic response of a structure, in which the record-to-record variability is considered as in the dual-metamodel-based fragility analysis approach. The metamodel can also predict the estimation error. Taking advantage of this ability, we present an AL strategy for adaptive sampling, so that the metamodel can be improved adaptively according to the problem. Using this metamodel and Monte Carlo simulation, seismic fragility curves can be obtained with a small number of calls for time history analysis. To verify its effectiveness, the proposed method was applied to three examples of nonlinear structures and compared with existing methods. The results show that this method has high computational efficiency and can ensure the accuracy of fragility curves without making the metamodel globally accurate.