The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were ϳ50 and ϳ10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an ϳ340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed ϳ4-and 11-fold reductions in A2 subunit generation and ϳ3-and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.Factor VIII, a plasma protein missing or defective in individuals with hemophilia A, is synthesized as an ϳ300-kDa single chain polypeptide corresponding to 2332 amino acids. Within the protein are six domains based on internal homologies and ordered as NH 2 -A1-A2-B-A3-C1-C2-COOH (1, 2). Bordering the A domains are short segments containing high concentrations of acidic residues that follow the A1 and A2 domains and precede the A3 domain and are designated a1 (residues 337-372), a2 (residues 711-740), and a3 (1649 -1689). Factor VIII is processed by cleavage at the B-A3 junction to generate a divalent metal ion-dependent heterodimeric protein composed of a heavy chain (A1-a1-A2-a2-B domains) and a light chain (a3-A3-C1-C2 domains) (3).The activated form of factor VIII, factor VIIIa, functions as a cofactor for factor IXa, increasing its catalytic efficiency by several orders of magnitude in the phospholipid-and Ca 2ϩ -dependent conversion of factor X to factor Xa (4). The factor VIII procofactor is converted to factor VIIIa through limited proteolysis catalyzed by thrombin or factor Xa (5, 6). Thrombin is believed to act as the physiological activator of factor VIII, as association of factor VIII with von Willebrand factor impairs the capacity for the membrane-dependent factor Xa to efficiently activate the procofactor (5, 7). Activation of factor VIII occu...