Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics.Sauerkraut fermentation involves many physical, chemical, and microbiological changes that influence the quality and safety of the product. This fermentation can be broadly categorized as having successive stages, including an initial heterofermentative stage followed by a homofermentative stage (11,22). Historically, four species of lactic acid bacteria (LAB) have been identified as organisms that are present in sauerkraut fermentations: Leuconostoc mesenteroides, Lactobacillus brevis, Pediococcus pentosaceus, and Lactobacillus plantarum. The identification of these microorganisms has been based on morphological and biochemical criteria (22). Several species of LAB other than the four species mentioned above have been found in cabbage fermentations, including Lactobacillus curvatus, Lactobacillus sakei, Lactococcus lactis subsp. lactis, and Leuconostoc fallax (3,19,25). Recently, six L. fallax strains were isolated from brine samples obtained from sauerkraut fermentations (2). The methods used for taxonomic characterization of LAB have been modified, and new species have been identified using molecular techniques (1,10,20,24). Improvements in molecular identification techniques for the study of microbial ecology have created new opportunities for the analysis of food fermentations.This study was carried out because of the need to reduce sodium chloride (salt) waste from commercial vegetable fermentations. It is well documented that the concentration of salt has a controlling influence on the microbial succession in a typical sauerkraut fermentation (11,12,22). It may be possible to reduce salt waste by fermenting cabbage with 1% salt instead of 2% salt, the concentration typically used. The introduction of an L. mesenteroides starter culture to the fermentation could help ensure that the initial stage of the fermentation produces the desirable flavor compounds (11). A method has been developed (23) to determine the ability of an unmarked starter culture to predom...