Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and codeposition of gold and carbon J. Appl. Phys. 112, 074312 (2012) We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamondlike carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp 3 fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp 2 clustering rather than hydrogen diffusion in the film. V C 2014 AIP Publishing LLC. [http://dx