Initially, the CALPHAD (Calculation of Phase Diagrams) method was established as a tool for treating thermodynamics and phase equilibria of multicomponent systems. Since then the method has been successfully applied to diffusion mobilities in multicomponent systems, creating the foundation for simulation of diffusion processes in these systems. Recently, the CALPHAD method has been expanded to other phase-based properties, including molar volumes and elastic constants, and has the potential to treat electrical and thermal conductivity and even two-phase properties, such as interfacial energies. Advances in the CALPHAD method or new information on specific systems frequently require that already assessed systems be re-assessed. Therefore, the next generation of CALPHAD necessitates data repositories so that when new models are developed or new experimental and computational information becomes available the relevant low-order (unary, binary, and ternary) systems can be re-assessed efficiently to develop the new multicomponent descriptions. The present work outlines data and infrastructure needs for efficient CALPHAD assessments and updates, highlighting the requirement for data repositories with flexible data formats that can be accessed by a variety of tools and that can evolve as data needs change. Within these repositories, the data must be stored with the appropriate metadata to enable the evaluation of the confidence of the stored data.Keywords: CALPHAD; Thermodynamics; Diffusion; Property data; Data and file repositories; Materials data infrastructure
ReviewThe first efforts using computational methods to describe Gibbs energy functions to represent the phases and describe phase equilibria were made more than 60 years ago as reviewed in [1]. However, only after computers became available did these efforts become systematic. In 1970, Kaufman and Bernstein [2] presented a collection of analytical thermodynamic descriptions of the Gibbs energy of the phases of binary and ternary systems as functions of temperature and concentration. These descriptions could be used for the calculation of phase equilibria and thermochemical properties in a large number of systems. This collection established the CALPHAD method as a valuable tool for the treatment of multicomponent a phase equilibria and spawned the development of several software packages and databases with collections of thermodynamic descriptions of multicomponent systems [1]. However, it soon became