Pressure induced structural sequences and their mechanism for light actinide (Th-U) mononitrides were studied as a function of 5f-electron number using first-principles total energy and electronic structure calculations. Zero pressure lattice constants, bulk module and C11 elastic module vary systematically with 5f-electron number implying its direct role on crystal binding. There is a critical 5f-electron number below which the system makes B1-B2 and above it B1-R3̄m-B2 structural sequence under pressure. Also, the B1-B2 transition pressure increases with increasing 5f-electron number whereas an opposite trend is obtained for the B1-R3̄m transition pressure. The ascending of N p anti-bonding states through the Fermi level at high pressure is responsible for the structural instability of the system. Above the critical 5f-electron number in the system a narrow 5f-band occurs very close to the Fermi level which allows the system to lower its symmetry via band Jahn-Teller type lattice distortion and the system undergoes a B1-R3̄m phase transition. However, below the critical 5f-electron number this mechanism is not favorable due to a lack of sufficient 5f-state occupancy and thus the system undergoes a B1-B2 phase transition like other ionic solids.