Abstract:The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H 2 SO 4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II) chloride dihydrate (SnCl 2 ·2H 2 O), an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl 2 catalyst was shown to be as active as the mineral acid H 2 SO 4 . Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl 2 ·2H 2 O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl 2 was very close those reported for H 2 SO 4 .
OPEN ACCESSEnergies 2008, 1 80